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ABSTRACT

A simple model for the structure of a non-rotating Hadley regime in an atmosphere with large thermal
inertia is developed. The radiative fluxes are estimated by using a linearization about the radiative equilib-
rium state and the dynamical fluxes are estimated by using scaling analysis. The requirement that differential
heating by these fluxes be in balance in both the meridional and vertical directions leads to two equations
for the mean static stability and meridional temperature contrast. The solution depends on two parameters:
the strength of the radiative heating, as measured by the static stability 4. of the radiative equilibrium
state; and the ratio of the time it takes an external gravity wave to traverse the atmosphere to the time it
would take the atmosphere to cool off radiatively, denoted by e.

In the deep Venus atmosphere e~ 107%; the equations are therefore analyzed in the limit e — 0. The large-
scale dynamics has virtually the same effect on the lapse rate as small-scale convection: if 4,>0 the radia-
tive lapse rate is unchanged, while if 4,<0 the lapse rate becomes subadiabatic, but only by an amount
of order €. Therefore, one need not invoke convection to explain the approximate adiabatic lapse rate in
the Venus atmosphere, but a greenhouse effect is necessary to explain the high surface temperatures. The
other properties of the solutions when 4,<0 are consistent with observational evidence for the deep at-
mosphere: the horizontal velocities are typically ~2 m sec™, the vertical velocities ~3 cm sec™, and the
meridional temperature contrast is unlikely to exceed 0.1K.

The same approach is used to study the time-dependent problem and determine how long it would take for
a perturbed atmosphere to reach equilibrium. If 4,>0 the adjustment is primarily governed by the radia-
tive time scale, which is about 100 earth years for the deep Venus atmosphere. If 4.<0 the adjustment is
governed by an advective time scale which may be as short as 20 earth days. Published numerical studies
of the deep circulation have only treated the first case, but their integrations were not carried beyond
about 200 earth days and therefore do not describe true equilibrium states. Only the second case, 4.<0,
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is consistent with the observations and it would be relatively easy to study numerically.

1. Introduction

In the last seven years the Venera probes have ob-
tained the first direct information about motions in the
atmosphere of Venus (Kerzhanovich et al., 1972;
Marov et al., 1973). However, the velocities measured
by the probes show a variety of magnitudes and direc-
tions. For example, Venera 4 measured a maximum
meridional velocity ~50 m sec™, Venera 7 a maximum
zonal velocity ~10 m sec™, and Venera 8 a maximum
zonal velocity ~100 m sec™’. Evidently, "a much larger
number of probes covering the whole planet is needed
to determine the mean circulation, and current dis-
cussions of the general circulation must rely on theo-
retical investigations.

The probes do supply indirect information about the
general circulation, through measurements of quantities
other than winds. For example, Venera 8 measured the
solar shortwave flux as a function of depth in the atmo-
sphere (Avduevsky et al., 1973) and found that about

5% penetrates to the lowest scale height. Since the
differential solar heating drive for atmospheric motions
is proportional to the one-fourth power of the absorbed
flux, this result strongly suggests that motions and
dynamical fluses will be important throughout the
atmosphere. Also the probes have shown that the lapse
rate throughout the deep atmosphere is very close to
adiabatic (Marov ef al.). This result is a constraint on
any theoretical investigation.

The first theoretical discussion of the deep circulation
was presented by Goody and Robinson (1966). Their
basic hypothesis was that, in an atmosphere with
negligible rotation subject to differential solar heating,
the general circulation would consist of a simple cellular
overturning, with rising motions in regions of net heat-
ing and sinking motions in regions of net cooling. This
kind of motion is generally referred to as a Hadley cell.
Since their hypothesis is essentially a statement that
the motions will be in a thermodynamically direct sense,
and since such motions are observed in many analogous
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situations [see Stone (1968) for references], it is difficult
to argue that the general circulation will not be a Hadley
cell, at least in an average sense. In fact, all subsequent
discussions of the general circulation of the deep atmo-
sphere have explicitly or implicitly adopted this
hypothesis, and we will do so in this paper.

Some of the other points in Goody’s and Robinson’s
original discussion have to be modified in the light of
subsequent results. For example, it is now clear that
thé thermal inertia of-the deep atmosphere is so large
(Thaddeus, 1968) that the thermal drives must be
primarily meridional rather. than zonal. Also the
Venera 8 measurement of a significant shortwave flux
penetrating to all levels of the atmosphere indicates
that thermal boundary layers are not likely to dominate
the flow patterns. In addition, it is clear that a thermo-
dynamically direct circulation cannot heat the surface
of Venus. By definition, warm air rises and cool air
sinks, so that the net vertical flux of heat across any
level surface is upward, and the circulations must cool
the ground. Thus, the most plausible explanation for
the high surface temperatures is the greenhouse effect
(Sagan, 1962; Pollack, 1969), particularly in view of
the Venera 8 flux measurements.

Subsequent theoretical investigations of the proper-
ties of the general circulation fall into two classes. The
first class avoids solving the equations of motion and
makes simplifying assumptions in order to estimate the
magnitude of important parameters. The scaling
analyses of Goody and Robinson (1966), Stone (1968)
and Gierasch ef al. (1970), and the similarity analysis
by Golitsyn (1970) fall into this first class. The first two
scaling analyses assumed that dynamical heating and
cooling in the deep atmosphere are balanced by small-
scale turbulent diffusion, while the third (Gierasch ef al.)
assumed that they are balanced by radiative heating
and cooling. In view of the Venera 8 flux measurements,
the ‘latter assumption appears to be more realistic.
Golitsyn’s similarity analysis assumed that the only
important external parameters were the amount of
solar energy absorbed, the specific heat and mass of
the atmosphere, the radius of the planet, and the
Stefan-Boltzmann constant.

If we adopt the analysis by Gierasch ef al. as the most
plausible scaling analysis, and apply it to the lowest
scale height of the Venus atmosphere, we deduce
meridional velocities ~1 m sec™! and a temperature
contrast between the equator and the poles ~1K.
Golitsyn’s similarity analysis led to the same estimates
for these two quantities. This agreement between two
quite diverse approaches gives considerable credence to
the estimates. The velocity estimate is consistent with
the Venera measurements, which showed velocities in
the lowest scale height of the order of a few meters per
second or less. The larger velocities quoted above occur
at altitudes near 50 km where atmospheric conditions
differ considerably from the lowest scale height. In
particular, at high altitudes the thermal time constants
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are much shorter and the circulations may be quite
different from the deep circulation: (Schubert and
Young, 1970). Also, one would expect higher velocities
at high altitudes simply because of mass continuity ; if
the deep circulation extends throughout the deep atmo-
sphere, a 1 m sec™! velocity near the surface would
become a 100 m sec™! velocity five scale heights above
the surface. The variations in velocities found by the
different Venera probes could be due to the general
instability of shear flows on Venus to small-scale
disturbances (Hart, 1972). The estimate of a small
temperature contrast is also consistent with thermal
maps (Murray et al., 1963) showing only slight tempera-
ture contrasts near the cloud tops.

Another striking agreement between Gierasch ef al.’s
scaling analysis and Golitsyn’s similarity analysis was
the deduction of the same dimensionless parameter as
that which controls the dynamics on Venus. This
parameter is the ratio of a dynamical time scale to a
radiative time scale. The dynamical time scale is the
time required for an external gravity wave to traverse
the planet, ~3X10* sec on Venus. The radiative time
scale is the relaxation time required for the deep
atmosphere to cool radiatively, ~4X10? sec on Venus.

The second class of theoretical investigations consists
of detailed numerical solutions of the equations of
motion and the energy equation. Such investigations
have been presented by Hess (1968), Sasamori (1971),
Turikov and Chalikov (1971) and de Rivas (1973).
Detailed calculations like these are necessary for deter-
mining important quantities such as the depth of the
Hadley cell and the strength of the vertical motions at
the cloud levels. All these investigations took the same
approach: an initial state was specified, the equations
were integrated using a time-marching procedure, and
when the solution appeared to have reached equilibrium
the integration was stopped. In all of these studies the
integrations were stopped after a time ~2X107 sec.
As noted by de Rivas this time is short compared to the
radiative relaxation time; it is therefore questionable
whether these calculations have indeed attained an
equilibrium state. They may have described only
quasi-equilibrium states quite different from' the mean
state. _

This possibility becomes more likely when one
examines the behavior of the static stability in these
integrations. In all cases the integrations started with
a adiabatic lapse rate, and after 2X107 sec the lapse
rate showed only small changes. Yet the deviations
from the adiabatic lapse rate must be calculated
accurately in order to describe the equilibrium dy-
namics. The small temperature contrasts observed and
deduced theoretically require a poleward transport of
heat by the large-scale circulations. This means that
the poleward branch of the Hadley cell in the higher .
atmospheric levels must on average be at a higher
potential temperature than the equatorward branch in
the lower levels. Thus, the lapse rate at least in a
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average sense must be subadiabatic. If the lapse rate
were exactly adiabatic there would be no poleward heat
flux. The flux is proportional to the difference between
the actual lapse rate and the adiabatic lapse rate, and
this difference, even though it is very small judging
from the Venera measurements, must be taken into
account in any dynamical calculation.

In order to estimate the static stability in the lower
atmosphere of Venus we present in this paper a simple
extension of the scaling analysis given by Gierasch ef al.
(1970). In particular, we will relax their assumption
that the horizontal and vertical contrasts of potential
temperature are comparable. Two equations for these
two contrasts may be obtained simply by writing con-
servation equations for both the vertical and horizontal
energy fluxes, in place of the simple global energy
balance equation used by Gierasch et al. Simultaneously,
we will assess the sensitivity of the equilibrium state to
the static stability, and the success of the published
numerical integrations in simulating the equilibrium
state,

2. The mathematical model

For our scaling analysis we will follow Gierasch et al.
We assume that the motion is two-dimensional and
steady ; neglect rotation and curvature effects; assume
hydrostatic equilibrium ; model radiative heating quali-
tatively by the simple linearization developed by
Spiegel (1957) and Goody (1964) ; and neglect all other
small-scale transport processes. We will differ from
Gierasch ef al. in that we will not make the Boussinesq
approximation. If the non-Boussinesq equations are
written in pressure coordinates they are no more
difficult to use in a scaling analysis than the Boussinesq
equations, and they are of more general applicability.
However, our qualitative results would not be changed
by using the Boussinesq equations.

The equations expressing conservation of mass,
momentum, and energy are then as follows:

v Ow
—+—=0, (2.1)
dy 9p
0 a do
—(@)+—(wr)=——, (2.2)
dy op 9y
do RT
ap P
d g f.—
—(v0)+—(wb) = ) (24)
oy dap T

where y is the meridional coordinate; p the pressure
normalized so that the average surface pressure is p=1;
v the meridional velocity ; w the time rate of change of p,
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ie.,
dp

W= »
dt

(2.5)

and is analogous to the vertical velocity; ¢ the geo-
potential height; R the gas constant; T the tempera-
ture; 6 the potential temperature,

6= Tpa—nIv, (2.6)

v the ratio of specific heats; 6, the radiative equilibrium
solution for # and is a function of ¥ and p; and 7 the
radiative relaxation time for perturbations with a
vertical scale equal to the scale height.

We treat Egs. (2.1)-(2.3) in the same way as Gierasch
et al. For the deep circulation the scale of p is O(1) and
the scale of y is O(L), where L is the equator-to-pole
distance. Thus, in order of magnitude, Egs. (2.1)-(2.3)
require that

v
w=0[ - g
O( L ) @D
1=0(4¢), (2.8)
A¢p=O(RAT), (2.9)

where A¢ and AT are the magnitudes of the horizontal
variations of ¢ and T. We use the horizontal variations
for estimating magnitudes in Eqgs. (2.2) and (2.3) since
it is the horizontal variations of geopotential height
arising from horizontal temperature gradients which
drive the large-scale motions. The magnitude of the
horizontal variations of potential temperature, A,
follows from Eq. (2.6): '

A9=O(AT). (2.10)

We will consider as our prime unknowns the dimension-
less mean gradients of the potential temperature,

AE——_‘ - (211)

L o8 Al
B=wv= O(T>,
0 oy 0

where the bar indicates an average over all y and p. In
the above A is a measure of the mean static stability of
the atmosphere, and B is essentially the equator-to-pole
temperature contrast normalized by the mean tem-
perature. We can relate the velocity magnitudes to B
by using Egs. (2.7)-(2.10) and (2.12):

(2.12)

2=0[(REB)¥],

2]

Therefore, B} gives the magnitude of the horizontal

(2.13)

(2.14)
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velocity, normalized to the phase speed of an external
grav1ty wave.

Gierasch et al. assumed that 4=0(B), and derived
an order-of-magnitude equation for B from (2.4). We
will not make this assumption, but will derive two
order-of-magnitude equations for 4 and B from (2.4).
For boundary conditions we will require that the
motions go to zero at the boundaries of the Hadley cell:

v=0 at =0, L, (2.15)
w=0 at p=2p, p. (2.16)

We will consider the Northern Hemisphere Hadley cell,
so that y=0 corresponds to the equator and y=1 to
the North Pole. Therefore, B is a positive definite
quantity. The surface pressure is p,, with a mean value
equal to unity because of our scaling, and p, is the
pressure at the top of the regions where significant
absorption of solar radiation occurs (p<<1). If we
integrate Eq. (2.4) over the whole lower atmosphere,
the above boundary conditions insure that

5=6,, @17

i.e., the mean potential temperature is only affected by
radiative transfer, and the dynamics only redistributes
the thermal energy.

To obtain our first equation we integrate (2.4) over p,
apply boundary conditions (2.16), evaluate the equation
separately at the equator and the pole, and subtract
the two resulting equations. We obtain

rot 9 L i f§,—0
[ 3]
ps 0¥ 0 ps T
This equation states that net radiative cooling at the
pole relative to the equator is balanced by dynamical
heating. Our second equation is obtained by integrating
(2.4) over vy, applying boundary conditions (2.19),

evaluating the equation separately at p, and p,, and
subtracting the two resulting equations:

L 3 pt Lg,—8. Dt
/ ——(w0)dy} =/ _ dyil . (2.19)
o 9P ~ps 0 T Ps )
This equation states that net radiative heating high in
the atmosphere relative to low in the atmosphere is

balanced by dynamical cooling.

To evaluate the terms in Egs. (2.18) and (2.19), we
adopt as a simple representation of the potential tem-
perature field, adequate for order-of-magnitude esti-

mates, a linear function of y and p with gradients equal
to the mean values, i.e.,

e

Substituting (2.20) into (2.6) we find for the corre-

:|L. (2.18)

(2.20)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuME 31

sponding heating function

06—0=é[(A—AQ(p—%)—{-(B—.Be)(Zy—%)]. @.21)

The subscript ¢ always indicates quantities evaluated
for the radiative equlhbrlum structure. Substituting
(2.21) into the radiative terms in Egs. (2.18) and (2.19),
and approximating p,=1, p,=0, we find

ptf,—0 L. 7}

/ dp:l =o[—(39—3)}
Ps T 0 T
Lg,—0 pe LG

[ dy] =O|:—(A3—A)].
0 T Pe T

We approximate the derivatives in the dynamical
terms by using simple differences, applying boundary
conditions (2.15) and (2.16), and again approximating
=1, p,=0, to obtain

Pt L 4 0 ’
/ —<w>dp} ~Z / o),izdp,  (224)
v ps 63’ 0 L 1, L

L J 3 Pt L
/ —(wG)dy] ~d4 / 0| pydp.
o 0p pe 0 ‘

To estimate these integrals we will again use our
expression (2.20) for 6, and we will also use simple linear
functions for the velocities, i.e.,

(2.22)

(2.23)

(2.25)

v]y—12=(ROB)* (1—-2p),

(R4B)* <gg_1>
L \L '/

The constants in these two functions have been chosen
so that mass s conserved (with p,=1, ,=0) and so
that the velocity magnitudes agree with those given by
the scaling analysis [ Egs. (2.13) and (2.14)]. Substitut-
ing (2.20), (2.26) and (2.27) into (2.24) and (2.25), we

obtain
7s 3 L
[ —teonip] -
DPs ay 0

Ly 2 _
/ —(wﬁ)dy] =O[~B4(R6B)*].
o Op

Ps

(2.26)

(2.27)

wlpy=

46
O[+T(R0B) :|, (2.28)
(2.29)

Finally we substitute (2.22), (2.23), (2.28) and (2.29)
into (2.18) and (2.19) to obtain two order-of-magnitude
equations for 4 and B,

1.
B—B,= —-AB?, (2.30)
€

(2.31)
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where
Tp
e=—, (2.32)
r
L (2.33)
Tp= ~——_—l .
(RO)

In the above 7p is the dynamical time scale referred to
in the Introduction, i.e., the time it takes for an external
gravity wave to propagate from the equator to the
pole; and e is the same dimensionless parameter that
Gierasch et al. (1970) and Golitsyn (1970) found to be
so important in describing a non-rotating atmosphere.

3. Equilibrium solutions

Gierasch et al. assumed that A=0(B). If this
assumption is introduced into Eq. (2.30), it reduces to
their Eq. (7). However, the simultaneous solution of
Eqgs. (2.30) and (2.31) will not in general be such that
A=0(B). Also we note that the solution will, in fact,
always have two properties which we noted in Section 1.
Since B has been defined to be a positive quantity
[cf. Eq. (2.12)], Eq. (2.30) requires that

B<B, onlyif A>0, (3.1)

i.e., the dynamical transports will act to reduce the
horizontal temperature gradient only if the atmosphere
is statistically stable. Also, referring to Eq. (2.31) we
see that

A> A, (3.2)

i.e., the dynamical transports always stabilize the atmo-
sphere. Since 6=#,, this result assures us that the
dynamics always cools the ground, on the average.

To solve Egs. (2.30) and (2.31) for Venus we must
specify appropriate values of B,, 4, and e. We can
estimate B, by assuming that the insolation varies as
the cosine of the latitude ¢ so that the meridional
variation of the radiative equilibrium solution is
governed by

To(y,p)= Te(;ﬁ)G COS¢>>%- 3.3)

Substituting (2.6) and (3.1) into (2.12), and choosing
¢=0@nm), T,=0(b.), and p=0(1) as typical, we find

/ANt T. sing
Be=—<“> PV 7 — =0(1).
8\r ) 06 (COS¢)%

Our knowledge of the absorbing properties of the Venus
atmosphere is not yet sufficient to allow us to estimate
A.. Consequently, we will leave A, as a parameter and
find solutions as a function of 4,. However it is useful
to note that for an isothermal atmosphere

(3.4)

R
A, =—pt 2 Iv=0(1),

Cp

(3.5)
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where ¢, is the specific heat at constant pressure. To
estimate e we chose as typical values for the deep Venus
atmosphere L=1.0X10° cm, R=1.9X10% erg (°K)™!
gm™, §=700K, and r=4X10° sec (Gierasch e/ al.,
1970). We then find

Tp=3X10* sec,
e=0.7X1075,

(3.6)
3.7)

From the results of Gierasch ef al. and Golitsyn we
anticipate that B<& B, when eX1. Therefore, we can
take advantage of the smallness of e by replacing
Eq. (2.30) by

1
B.=~-AB.

€

(3.8)

Substituting for 4 from this equation into (2.31) we
obtain ‘

At— A A3= 2BJ. (3.9)

Eq. (3.9) always has one positive real root and one
negative real root. Since Eq. (3.8) requires that 4>0,
there is a unique real solution of Egs. (3.8) and (3.9).
When <1, the solution can be found by perturbation
series. We distinguish three cases:

Case (1): Statically unstable radiative slates

If A4.<0, and | A,| >O(e), then the solution is
[4.]*¥
B=él|4,|H-0(e)

A=¢

+0(e)
. (3.10)

Case (it): Radiative states near neutral stability

If |A4.] £0O(ed) the solution cannot be expressed in
analytical terms, but the order of magnitude can be
deduced, and the particular solution for 4,=0 can be
found, namely

A=0(e)
}, (3.11a)
B=0{(e)
A=eBH0()
, }, if 4,=0. (3.11b)
B=¢B;+0(e)

Case (143): Statically stable radiative states

If 4.>0 and | 4.] >O(e?), then the solution is

Bo\®
A=Ae+e2<A—> +0(e?)

B (3.12)
B= 62(—A—8>—}—O(e2)
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Using these solutions to check our assumption that
BKB,, we find that the assumption holds unless
simultaneously 4.,<0 and |4.|2>O(e™). Under such
circumstances statically unstable solutions (4 <0) can

_occur. This situation would only arise if the atmosphere
had a very large optical depth, of the order of 10? or
larger for Venus. Therefore, Egs. (3.10) to (3.12)
represent essentially a complete solution for the possible
states on Venus.

The above results showing three basically different
kinds of equilibrium are summarized in Table 1. The
order of magnitudes of the dimensionless static stability
(4), the equator-to-pole temperature contrast [ B, cf.
Eq. (2.12)7, and the velocities [ B3, cf. Egs. (2.13) and
(2.14)7] are tabulated for the different order of magni-
tude ranges of 4,. Since B, is necessarily of order unity,
only the dependences on 4. and e are shown. We see

“from the table that the small value of ¢ in the deep
Venus atmosphere will insure that the equator-to-pole
temperature contrast and the velocities are relatively
small. As for the static stability, we can distinguish
essentially two different situations. If the radiative
state is statically stable, the static stability is virtually
unaffected by the dynamics. If the radiative state is near
neutral stability or statically unstable, the dynamics
produces a virtually adiabatic lapse rate. In this latter
case the lapse rate is subadiabatic, but only by very
small amounts. Only in this case is the greenhouse effect
strong enough to cause the high surface temperatures
on Venus, and therefore this is the case we expect to
occur on Venus.

Our qualitative results can be explained in a straight-
forward physical way. Consider first the case of a
statically stable radiative state. Because of the very
long radiative time constant and very short dynamical
‘time constant, the meridional dynamical fluxes are
much more efficient than differential solar heating, and
the equator-to-pole temperature contrast is almost
wiped out. Since the small meridional temperature
contrast makes vertical motions very inefficient at
transporting heat upward, thie dynamics hardly modifies

TapLE 1. Parameter dependences of equilibrium atmospheric
properties when e<1.

Radiative-dynamical state

Tempera-
Staticsta- ture con-  Velocity
Radiative state bility ‘trast  magnitude
Statically unstable
eiIAe]—§ et|4.[t €§|A¢li

—€I<4,<—¢é
Near neutral stability

65 € 6*
—é<4,£é
Statically stable

A, A2 ed:!
Ei < A e

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuMe 31

the static stability of the radiative state. Next con-
sider the changes as the static stability decreases.
Now the entropy difference between the poleward and
equatorward branches of the Hadley cell becomes
smaller and the meridional motions become less efficient
at transporting heat. Consequently, the meridional
temperature contrast increases and the vertical dy-
namical fluxes became more efficient. When the static
stability approaches zero there is an order of magnitude
decrease in the efficiency of the meridional dynamical
flux and an order of magnitude increase in the efficiency
of the vertical dynamical flux. Thus it is very difficult
to get superadiabatic lapse rates and the equator-to-pole
temperature contrast is relatively much larger.

4, The adjustment problem

We can also use the approach of Section 2 to study
how the deep atmosphere reaches an equilibrium, given
an arbitrary initial condition. Such a calculation will
reveal the important time scales governing variations
in the temperature structure, and show how long
numerical integrations seeking equilibrium solutions
have to be carried forward in simulated time. To derive
the time-dependent equations, we relax the assumption
that the solution is steady, and replace (2.4) by

a0 9 3 6.—6
—+—(0) +—(wb) =——.
at 3y ~ 9p

T

(4.1)

We will continue to neglect time derivatives in the
equation of motion, i.e., we will assume that the time
required for the motions to come into balance with the
temperature field is much less than the time required
for the temperature field to reach equilibrium. We will
test this assumption a posteriori.

We derive time-dependent equations for 4 and B
from Eq. (4.1) in a manner identical to that used for
deriving the equilibrium equations for 4 and B in
Section 2. The only difference is that 6 is now allowed
to vary in time. The resulting equations are

dB 1 :
—+B—B,=—-AB?, (4.2)
ar €
dA 1
—4-A4—A,=-B}, 4.3)
at’ €
where ¢ is a dimensionless time variable,
¢
- V=-. (4.4)
T

The time scales contained in the solution of Eqs. (4.2)
and (4.3) depend on the magnitudes of 4 and B. As we
saw in the preceding section, these magnitudes depend
on 4. and therefore different time scales are appropriate
for different ranges of 4..
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Case (2): Statically unstable radiative states

The equilibrium solution is given by Eq. (3.10), and
we define new variables,

A

a=—=0(1), (4.5)
B

b=—=0(1). (4.6)

Substituting these expressions into (4.2) and (4.3), we
obtain

ab
e§<—ﬂ+b>=Be—ab%, 4.7)
ar

da
e?‘(——}-a):b*— [4.].
dar’

Inspection shows that there will be two time scales in
the adjustment:
o
V= .
0(1)

(4.8)

(4.9)

The second time scale is the radiative relaxation time
scale, and the first is essentially an advective time scale
(see below). To study changes on the advective time
scale, we define a new time variable,

= €¥t*. (4.10)
Egs. (4.7) and (4.8) now become

db
——=B,—ab*4-0(e), (4.11)
at*
da
—=pt—14,]+0(e). (4.12)
dr*

Since the pair of equations is second order in ¥, an
arbitrary initial condition will adjust to equilibrium
within an error of order € on the advective time scale.
If we linearize Egs. (4.11) and (4.12) by assuming small
perturbations from equilibrium, and assume that the
perturbations are of the form e’ we find

B, r 244 2\}
o= — 1:|:<1 ) il
414,11 B2
Thus the perturbations are always damped, and they

will also oscillate if B,<2V6|A4,|. For example, if we
arbitrarily choose B.= |4.|=1, we find

o= —0.251.27.

(4.13)

(4.14)

Using the values of 7 and e given previously, we find
that this solution oscillates with a period of 8 X10° sec,
and is damped by a factor 1/¢ in 6X10¢ sec. The re-
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maining deviations from equilibrium, of order €%, are
finally removed on the long radiative time scale. For
all practical purposes a complete adjustment is attained
on the advective time scale. If we take into account the
A, dependence in Eq. (4.13), this time scale is

l,_{O(e%lAel%), if 14.120(1)

. (a3
O(et|4.|7%), if [4.]<0(1)

Case (i1): Radiative stales near neutral stability

Now solution (3.11) is appropriate, and e and b must
be defined differently if they are to be of order unity.
We redefine

4
a=—=0(1), (4.16)

B
b=—=0(1), (4.17)

4,
a,=—=0(1). (4.18)

€

Substituting these into (4.2) and (4.3), we obtain

db
e(———l—b)—Be: —ab?, (4.19)
dt’
da
—+ta—a,=b% (4.20)
dt’

By inspection we see that again there are two time
scales in the adjustment, but now they are

low]
i= )
0(1)
These correspond to the dimensional time scales 7p
and 1.

To determine the behavior on the short time scale,
we redefine

(4.21)

= et*,

4.22)

We substitute this definition into (4.19) and (4.20),
let e— 0, and obtain

db
——B,=—ab}, (4.23)
ar*
da
—=0. (4.24)
ar*
If we specify as initial conditions
b= b()
}, at =0, (4.25)
a=4ay
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we can implicitly integrate Egs. (4.23) and (4.24) to find
(4.26)

>. (.27

a=ao
2 4k

dob% —Be Qo ., ag t
— exp[—(b%—bw)} - exp( -
dobof —Be Be 2B

[

Therefore, ¢ is unchanged over the short time scale,
while & evolves from its initial value to a quasi-
equilibrium value B.2/aq
To determine the behavior over the long time scale,
I'=0(1), we let e— 0 in Egs. (4.19) and (4.20). The
latter equation is unchanged, while the former reduces
to the quasi-equilibrium relation

- B,
br=—" (4.28)
a
Substituting this into (4.20), we find
da B2
—+a—a,= (4.29)
ar a?

Therefore, a evolves from its initial value to its equi-
librium value over the long time scale, and the quasi-
equilibrium value of & evolves simultaneously. We can
solve Eq. (4.29) in the special case a,=0. If we apply
as an initial ‘condition (4.26) so that the solutions for
the short and long time scales join smoothly, we obtain

a=[ae ™ +BS(1—e) ] (4.30)
b= B ade " +B(1—e ¥ ] (4.31)

Therefore, a complete adjustment to equilibrium is only
attained on the long radiative time scale.

Case (i11): Statically stable radiative siates

Now the appropriate equilibrium solution is given
by Eq. (3.12). Thus we redefine

A
a=—=0(1), (4.32)
Ae
B
b=—=0(1). (4.33)
c2
Substituting these into (4.2) and (4.3), we find
ab
62(—+b>=Be—Aeab%, (4.34)
dar
da
Ae<—+a—— 1>= &b, (4.35)
dt

By inspection we see that now the relevant time scales
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are

= { o) } . (4.36)

0o(1)

To find the time dependence on the short time scale
we redefine ‘

(4.37)

substitute for ¢ in (4.34) and (4.35), and let e— O.
We find

U= é*,

db )
—=B,—Aab}, (4.38)
dr*

da

These equations have thé same form as Eqgs. (4.23) and
(4.24) and their solution is similar. We find that a re-
tains its initial value on the short time scale, while b is
given by Eq. (4.27) with g, replaced by aod.. Again b
attains a quasi-equilibrium value on the short time
scale.

To find the time dependence on the long term scale
we let € — 0 in Egs. (4.34) and (4.35), and obtain

B,= A abt, (4.40)

da
—4+a—1=0. (4.41)

at

The solution is
a=14(ae—1e v, (4.42)
B

bzz‘—z[l—i-(dg—l)e‘“]—Q. (443)

Again a complete adjustment to equilibrium is only
attained over the long radiative time scale.

Now we check our assumption that the time required
for the motions to come into balance with the tempera-
ture field is much less than the time required for the
temperature field to reach equilibrium. The former
time scale is the advective time scale, L/v. Referring
to Eq. (2.13) for the magnitude of v, we define

L €T L
Tp= - = =O< _>.
(R6B)* B} ?

Substituting into (4.44) our equilibrium solutions for B
[Egs. (3.10)-(3.12)7], we obtain

(4.44)

4.<0

ér
TA=0< > if. [ 1 } (4.45)
|Ac|i IAe|>O(fi) .
T4=0(e7), if |4.]<0(é), (4.46)
A>0
T.=0(4.7), f { , ] (4.47)
[4.]>0(e)
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Comparing these advective time scales with the time
scales we found for the adjustment of the temperature
field to equilibrium, we see that there is only one
situation where the former exceeds the latter—when
simultaneously 4.>0 and |4,|>0(1). In this case we
expect a complete adjustment to require the longer
advective time scale. Also there is one special case when
the time scales are the same—when |4.|=0(1),
regardless of the sign of A4.. In this case our solutions
for the adjustment given above will be quantitatively
inaccurate, but the basic time scale of the adjustment
process will not be changed. In all other cases our
original assumption is valid and our solutions given
above for the adjustment time scale are accurate.

Our results for the adjustment time scale when e<1
are summarized in Table 2. This table shows the order
of magnitude of the dimensionless adjustment time
(t/7) for the different order of magnitude ranges of A..
For neutral or stable radiative states, the adjustment
occurs on the radiative relaxation time scale or longer.
For unstable radiative states the adjustment occurs on
an advective time scale which reaches a minimum when
A.<0 and |A4,]=0(1). This advective time scale can
be considerably less than the radiative time scale if ¢ is
sufficiently small.

Finally we note that the mean potential temperature
6 adjusts to equilibrium independently of A and B.
Combining Eq. (2.20) with Eq. (4.1) averaged over
all y and p, we find

a6

at T

Therefore,  always relaxes to its equilibrium value
with the radiative time scale. This adjustment is of
limited interest since it does not affect the atmospheric
structure or dynamics.

6,—6

(4.48)

5. Discussion

Our analysis in Sections 2-4 is applicable to atmo-
spheres for which the following assumptions hold: (i)
the thermal inertia is large enough that diurnal effects
are negligible and e<1; (i) the rotation rate is slow
enough that the dominant large-scale circulation will
be an overturning Hadley cell; and (iii) the motions
are driven directly by local radiative heating. Our
results show that there are three qualitatively different
states which such atmospheres can have, depending on
the strength of the radiative heating, as measured by
the static stability 4, of the radiative state. Table 1
shows the dependence of the important dimensionless
quantities on e and 4,.

All the states are characterized by small meridional
temperature contrasts and velocities. The lapse rates
resemble those produced by small-scale convection. If
the radiative state is stable the lapse rate is essentially
unchanged from that in the radiative state, and if the
radiative state is unstable the lapse rate is nearly

PETER H.
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TaBLE 2. Parameter dependences of the time necessary to reach

radiative-dynamical equilibrium when 1.

Radiative state Adjustment time

—eI <4, <—1 VAL

—1<d4,<—¢ et|d. |

—ed<A.<1 1
1<4. A,

adiabatic. However, in the latter case the lapse rate is
slightly subadiabatic, so small-scale convection will
not occur, at least in a mean sense. The magnitudes
given in Table 1 refer only to mean quantities, and we
cannot exclude the possibility that local values will
vary substantially in magnitude. Such variations are
especially likely above the lowest scale height because
of the decrease of pressure and density. Conditions in
these regions have a relatively small effect on mean
atmospheric quantities.

In view of our discussion in Section 1, the assumptions
made in our analysis are reasonable ones for the deep
Venus atmosphere. If we use the same values of the
parameters specified in the preceding sections as typical
of Venus, then the dimensionless magnitudes given in
Table 1 can be converted to dimensional magnitudes
by multiplying by the following units: 50K km™ for
the static stability, 700K for the meridional temperature
contrast, 400 m sec™ for the horizontal velocity, and
60 cm sec™ for the vertical velocity. Since e= O (10-?)
for Venus, the only states consistent with the observa-
tions are those corresponding to 4,< —e¥. These states
have just the properties anticipated by our discussion
in Section 1. The lapse rate is very close to the adiabatic
lapse rate, but sufficiently far from it that the dynamical
transports reduce the meridional temperature contrast
to very small values. Furthermore, they are the only
states which have horizontal velocities as large as a few
meters per second. With e=0.7X107%, if we arbitrarily
specify that the static stability of the radiative state
is —1K km™ (4,= —0.02), we calculate the following
magnitudes for the equilibrium state: a mean static
stability of 40.07K km™!, an equator-to-pole tempera-
ture contrast of 0.02K, a horizontal velocity of 2 m sec™,
and a vertical velocity of 0.4 cm sec™. All these values.
are consistent with our current knowledge of the deep
Venus atmosphere. We conclude that the hypothesis.
that the deep circulation is basically a Hadley cell,
with the temperature structure determined by the
radiative and large-scale dynamical fluxes, is a viable
one. We note that the velocities are not strongly
dependent on A, and therefore the above velocity
estimates are fairly firm ones. The equator-to-pole
temperature contrast is more strongly dependent on 4.,
but it would be reasonable to conclude, for example,
that the contrast is unlikely to exceed 0.1K.
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Our results for the adjustment time, summarized in

Table 2, are particularly useful in evaluating the-
numerical calculations of the Venus circulation. The

dimensionless time scales in this table may be converted
to dimensional times by multiplying by the radiative
relaxation time 7 which is about 100 earth years for
Venus. Turikov and Chalikov (1971) neglected long-
wave radiation and assumed that the radiative response
of the deep atmosphere was instantaneous, i.e., 7=0.
Therefore, their results are not very meaningful for
Venus. Hess (1968), Sasamori (1971), and de Rivas
(1973) all studied situations with 4,>0, but only inte-
grated for periods of about 200 earth days. Since the
adjustment time scale for the deep atmosphere in these
cases Is of order 7 or larger, their solutions only describe
quasi-equilibrium states and would have continued to
evolve slowly if the integrations had been continued.
However, their solutions may have reached equilibrium
in the upper parts of the atmosphere where the effective
value of 7 is much less.

Extending these numerical calculations with 4,>0
would be a formidable problem because of the computer
time required. However, our results suggest that calcula-
tions with 4,< —e! are more relevant for Venus. For
these states the adjustment time is an advective time
scale, which can be as small as 20 earth days
(if 4,~—1). It would be relatively easy to explore
these states numerically.
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